Describing and Using Patterns for UI Design

tutorial

Describing and Using Patterns for UI Design

Daniel Lafrenière, TELUS
Åsa Hedenskog, Ericsson

© 2001 by Daniel Lafrenière and Åsa Hedenskog
All rights reserved

Abstract

In this tutorial, participants will learn the background of patterns, and experiment with the discovery, description and application of patterns through hands-on experience. The exercises will be based on our Pattern Supported Approach to the User Interface Design Process (PSA), since it spans many aspects of pattern usage and, most importantly, will provide a common ground for tutorial participants.

Since patterns are best understood by seeing and using, the emphasis will be on the exercises. Our goal is to give the participants a good feeling for what patterns are about, and how they can be used for strengthening the design process.

This tutorial has been taught during UPA 2000, TorCHI 2000, to a group of usability consultants in 1999 (in Sweden), to a group of researchers and practitioners at the Ericsson Conference of Usability Engineering 1999, and at Laval University in Québec, QC at the graduate level in multimedia in 1999 and 2000. A workshop was also organized during UPA 1999 in Scottsdale, AZ with great success.

This latest version is especially created for HCI practitioners, by emphasizing the practical aspects of patterns and how to integrate them into participants’ own work practice.

Attendees will gain an understanding of issues in user interface patterns:
- Understanding the basics of patterns in the UI design process
- How to discover, describe and use patterns
- How to integrate patterns in your own practice

© 2001 - Lafrenière & Hedenskog
Instructor Biographies (2005 update)

Daniel Lafrenière (daniel.lafreniere@gmail.com) is a consultant in UI methodologies, architecture and design at TELUS. His contracts include task analysis, writing guidelines, UI architecture and design, evaluation, and integrating user-centered techniques within the software development lifecycle. He published the book *Créez des interfaces gagnantes (Create Winning User Interfaces)*, which is a synthesis of techniques and guidelines on user interface design. In 1993 he co-authored a course on HCI for the Computer Science bachelor program at Université Laval. He has been teaching HCI there since, in the CS Department and more recently in the Visual Arts School (masters in multimedia). Daniel is a member of ACM SIGCHI and UPA.

Åsa Hedenskog (asagr@ida.liu.se) is a usability engineer at Ericsson Radio Systems AB. She works with support for Ericsson’s method for user centered design - DELTA. Her work at Ericsson also includes covering new tools and techniques for usability engineering, participating in applied research projects aimed at identifying and evaluating new tools and techniques, method development (DELTA) and teaching. Previous to joining Ericsson, Åsa worked as a usability consultant doing task analysis, user profiling, prototyping, testing, evaluation and process development. The work also included teaching, introducing usability in client organizations and giving method support. Åsa is a member of ACM SIGCHI, UPA and has been president of the Linköping Local Chapter of UPA (Sweden).

Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-10:00</td>
<td>Introduction and Background of Patterns</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Break</td>
</tr>
<tr>
<td>10:30-11:15</td>
<td>Hands-on Session # 1 : Using Design Patterns</td>
</tr>
<tr>
<td>11:15-12:00</td>
<td>The Pattern-Supported Approach to the UI Design Process</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:00-13:30</td>
<td>The Pattern-Supported Approach to the UI Design Process (cont’d)</td>
</tr>
<tr>
<td>13:30-14:15</td>
<td>Hands-on Session # 2 : Preparing for User & Task Analysis</td>
</tr>
<tr>
<td>14:15-14:45</td>
<td>Capturing Patterns</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>Hands-on Session # 3 : Describing a Task Pattern (first half)</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td>Break</td>
</tr>
<tr>
<td>15:30-17:00</td>
<td>Hands-on Session # 3 : Describing a Task Pattern (second half)</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>Plenary Discussion: Participants' Experiences and Conclusion</td>
</tr>
</tbody>
</table>

© 2001 - Lafrenière & Hedenskog
Objectives of the Tutorial

- at the end of the tutorial, you will:
 - understand the basics of patterns in the UI design process
 - understand about the discovery, description and usage of patterns
 - get started on thinking of how to integrate patterns into your own practice
- the focus of this tutorial will be on task analysis and design

Part 1

Introduction

© 2001 - Lafrenière & Hedenskog
Describing and Using Patterns for UI Design

Introduction

• there is a need to document experience
• there is a need to communicate between people that are involved in the UI design process (usability engineers, designers and users)
• we think that patterns offer support both for documenting design knowledge and for facilitating communication

What is a Pattern?

A pattern is a formalized description of a proven concept that expresses non trivial solutions to a UI design problem. The primary goal of patterns in general is to create an inventory of solutions to help UI designers resolve UI development problems that are common, difficult and frequently encountered.

— adapted from [Loureiro & Plummer, 1999]

Patterns provide …possible good solutions to a common design problem within a certain context, by describing the invariant qualities of all those solutions.

— [Tidwell, 1999]

A pattern is a named nugget of insight that conveys the essence of a proven solution to a recurring problem within a certain context amidst competing concerns.

— [Appleton]
What do these Definitions Have in Common?

- a proven, generic solution to a recurring problem
- the problem occurs within a certain context
- there are numerous competing concerns present
- we also want a formalized description

What is Proven?

- a real solution, not just a strategy or an abstract principle
Describing and Using Patterns for UI Design

Why Generic?

Why Recurring?

• we have to make sure that we’re not producing theories or speculations - *Rule of Three*
Why Context?

- we need to know when the solution is applicable

Why Competing Concerns (Forces)?

- why isn’t the solution trivial?
- the proposed solution balances the concerns in the best manner for the given context
Simply Put ...

- patterns can be said to provide powerful and generic design guidance at a format that is consistent and easy to read and understand – they convey knowledge about good design

Format

- name
- problem
- context
- forces
- solution
- examples
- resulting context
- rationale, related patterns and known uses
Name

- meaningful
- refers to the knowledge it describes (sometimes AKAs)

Example:
- Progress indicator
 (adapted from [Tidwell, 1999])

Context

- describes the user’s goal

Example:
- A time-consuming process is going on, the results of which is of interest to the user.
Problem

- describes the **design goal**
- what is the intent of solving the problem?
- what are the objectives?
- what are we trying to accomplish?

example:

- How can the artifact show its current state to the user, so that the user can best understand what is going on and act on that knowledge?

Forces

- what are the relevant concerns when solving a problem?
- what forces and constraints apply, and how do they interact/conflict (with one another or with the goal we wish to reach)?
- the solution will have to accommodate trade-offs between the forces

example:

- The user wants to know how long they have to wait for the process to end.
- The user wants to know that progress is actually being made, and that the process hasn’t just **hung**.
- The user wants to know how fast the progress is being made, especially if the speed varies.
- Sometimes it’s impossible for the artifact to tell how long the process is going to take.
Describing and Using Patterns for UI Design

Solution

- a description of how to realize the desired outcome

example:

- Show the user a status display of some kind, indicating how far along the process is in real time. If the expected end time is known, or some other relevant quantity (such as the size of a file being downloaded), then always show what proportion of the process has been finished so far, so the user can estimate how much time is left. If no quantities are known - just that the process may take a while - then simply show some indicator that it's still going on.

Solution (cont’d)

- a description of how to realize the desired outcome

example (cont’d):

- Animation is often used to good effect in this pattern; motion draws the user’s attention, and its cessation implies a new relaxed, stable state of being (the process is done, so you can relax now).

- Sound can also be used this way, for the same reason. Be subtle, though, and be aware of the importance of the process relative to the other things demanding the user’s attention.
Examples

- help a reader understand if a pattern is applicable, and how to use it
- describe an initial context, how the pattern is applied to a specific problem, and what the resulting context is

Example:
- Countdown timer on a microwave oven.
- The percent-complete message during a file download.

Part 2

Background

© 2001 - Lafrenière & Hedenskog
A Bit of History

- architect Christopher Alexander wanted to create structures that improve people’s comfort and quality of life
- he promoted *timeless design* ideas to make this happen
- he proposed a paradigm for architecture based on three concepts:
 - the *Quality* (*the Quality Without a Name*)
 - the *Gate*
 - the *Way* (*the Timeless Way*)

The Quality

- this is the *essence* of all things living and useful that imparts unto them qualities such as: freedom, wholeness, completeness, comfort, harmony, habitability, durability, openness, resilience, variability, and adaptability
- it is what makes us feel alive and sated, gives us satisfaction, and ultimately improves the human condition
The Gate

- this is the mechanism that allows us to reach the quality
- it is manifested as a living common pattern language that permits us to create multiform designs which fulfill multifaceted needs
- it is the universal ether of patterns and their relationships that permeate a given domain
- the gate is the conduit to the quality

The Way

- using the way, patterns from the gate are applied using a technique of differentiating space in an ordered sequence of piecemeal growth: progressively evolving an initial architecture, which then flourishes into a live design possessing the quality
- by following the way, one may pass through the gate to reach the quality
Describing and Using Patterns for UI Design

HCI Patterns

- are being used implicitly by skilled UI designers ... however, these designers usually keep little in the way of formal (or documented) descriptions of these solutions
- are quite recent:

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>CHI Workshop</td>
<td>[Erickson]</td>
</tr>
<tr>
<td>1998</td>
<td>UPA Workshop [Casaday]</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>CHI Workshop [Borchers]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPA Tutorial [Lafrenière & Granlund]</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Common Ground [Tidwell]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPA Workshop [Granlund & Lafrenière]</td>
<td></td>
</tr>
</tbody>
</table>

HCI Patterns vs Style Guides

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Style Guides</th>
</tr>
</thead>
<tbody>
<tr>
<td>provide a solution to a re-occurring problem in a specific context</td>
<td>specify graphical appearance and behavior in accordance with a manufacturer's look & feel</td>
</tr>
<tr>
<td>carry usability information about the user, the context and the task</td>
<td>don’t provide contextual information ... more preoccupied by the microscopic aspect of design</td>
</tr>
<tr>
<td>usually point to other patterns in a network way, forming a family of inter-related patterns</td>
<td></td>
</tr>
</tbody>
</table>
Patterns in the Software Lifecycle

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Design</th>
<th>Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture [Lafrenière]</td>
<td>Model-based [Lafrenière]</td>
<td></td>
</tr>
<tr>
<td>Requirements [Robertson]</td>
<td>Layout [Siemon]</td>
<td></td>
</tr>
<tr>
<td>Data [Fowler]</td>
<td>UI Design [Tidwell]</td>
<td></td>
</tr>
<tr>
<td>Business Domain [L&G]</td>
<td>UI Design [L&G]</td>
<td></td>
</tr>
<tr>
<td>Process [L&G]</td>
<td>UI Architecture [L&G]</td>
<td></td>
</tr>
<tr>
<td>Task [L&G]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• : PSA patterns can be found in those areas

[L&G] : Lafrenière & Granlund

Architecture Patterns
[Alexander & al., 1977]

Half-Private Office (Pattern # 152)

What is the right balance between privacy and connection in office work?
The totally private office has a devastating effect on the flow of human relationship within a work group, and entrenches the ugly quality of office hierarchies. At the same time, there are moments when privacy is essential; and to some extent nearly every job of work needs to be free from random interruption...

Avoid closed off, separate, or private offices. Make every workroom, whether it is for a group of two or three people or for one person, half-open to the other workgroups and the world immediately beyond it. At the front, just inside the door, make comfortable sitting space, with the actual workspace(s) away from the door and further back.

© 2001 - Lafrenière & Hedenskog
Musical Design Patterns
[Borchers]

- **Name:** Triplet Groove
- **Context:** Playing music in the Jazz Style.

```
\( \begin{array}{cccc}
  \cdot & \cdot & \cdot & \cdot \\
  \cdot & \cdot & \cdot & \cdot \\
\end{array} \) 3 \ 3
```

- **Forces:** Players need to create a swinging feeling that the straight rhythm from other musical styles does not convey. But: Sheet music cannot include all rhythmic variances; it would become unreadable.
- **Solution:** Where the score contains an evenly spaced pattern of eighth notes, shift every second eighth note backwards in time by about one third of its length, shorten it accordingly, and make the preceding eighth note one third longer. The length ratio changes from 1:1 to 2/3:1/3. Two straight eighth notes become a triplet quarter and eighth note. The result is a *laid-back groove*.
- **Examples:** Any recorded Jazz piece features this rhythmic shift. The actual shift percentage varies widely: usually, the faster a piece, the less shifting takes place.
- **Consequences:** This pattern uses an underlying straight beat like 4/4 Rhythm.

Why Patterns?

- consistent, easy to read, provide *background reasoning*
- accessible *(easy to read and evaluate)*
- *lingua franca* (regardless of background and experience) for usability engineers, designers and users
- allows *cross-fertilizing*
- promotes *reuse*
- using patterns should be like asking your experienced colleague in the next room
- we could have used something else but we think patterns represent a very good way of passing on knowledge

© 2001 - Lafrenière & Hedenskog
[Borchers, 2000] Claims

- HCI patterns must be readable and understandable by professionals and non-professionals alike (which is not the case in Requirements and OO Patterns)
- HCI patterns will take power from HCI designers and put it into the hands of users
- the use of patterns in the various domains can be mapped to most phases of the usability engineering lifecycle

Hands-on 1

Using Design Patterns

30 min.
The PSA Approach

- patterns describe generic solutions to common problems in context
- up to this point, most of the work on patterns for UI has focused on screen design issues
- PSA suggests a wider scope for the use of patterns by looking at the overall user oriented UI design process
Our View on UI Patterns

- we think patterns will be a valuable source of information, supporting both the analysis of the current situation and the design of the new system
- we do not think of patterns as the sole source of information for documenting and passing on design knowledge — it is an additional source with certain valuable qualities

PSA Overview
Business Domain Patterns

• describe the type of business, its goals, and the actors and business processes typically involved

Business Process Patterns

• describe typical processes and actors involved in the delivery of services/goods in compliance with business goals
Task Patterns

- capture and pass on knowledge about typical users, the work context and the task

Structure & Navigation Design Patterns

- describe ways to structure information and/or functions based on navigational styles, in order to support the user’s task
Screen Design Patterns

- document GUI design issues

PSA Patterns

- information patterns (domain specific - non generative):
 - business domain
 - business process
 - task

- design patterns (generic patterns - generative):
 - structure & navigation design
 - screen design
Why Information Patterns?

- we do reuse information
- you don’t have to completely re-analyze a task that has already been analyzed many times
 - compiled and accessible information
 - provides earlier and more relevant feedback from users ... those information patterns can be used as the starting point for requirement analysis
- ref. to [Robertson, http://] requirements patterns

PSA Patterns

- the usability of a system emerges as the product of the following:
 - user
 - task
 - context of use
- learning about these three factors, and designing according to this knowledge, is the key to successful system design from a usability point of view
What is PSA for?

- to strengthen the analysis of the user, the context and the task by drawing upon and communicating knowledge from previous design projects thus avoiding re-analyzing problems and re-compiling information
- to guide and support the usability team throughout the design process

PSA Patterns

© 2001 - Lafrenière & Hedenskog
Description Format

- strongly based on the Alexandrian form:
 - name
 - context
 - problem
 - forces
 - solution
 - example
- all elements are not used for all pattern descriptions all the time

Business Domain Pattern

- describes the type of business, its goals, the actors and business processes typically involved
- acts as a starting point
- helps communicate the system vision
Business Domain Pattern Example

- **Name:** Public Healthcare
- **Context:** The business is to provide good healthcare to the public audience, with governmental funding.
- **Forces:**
 - The audience is very large
 - Monetary funding is limited
 - There is personnel shortage (doctors, nurses and administrators)
 - Service delivery time is always crucial
- **Resulting Business Process patterns:**
 - Preventive healthcare
 - Emergency healthcare
 - Healthcare on demand (patient looks up the service due to some perceived health problem)

Business Process Pattern

- describes typical processes and actors involved in the delivery of services/goods in compliance with the business goals
- narrows down the system definition and points to specific task patterns

© 2001 - Lafrenière & Hedenskog
Business Process Pattern Example

- **Name:** Healthcare on Demand
- **Context:** The business provides care to patients who seek help because they are experiencing a health problem (that is not of an emergency type).
- **Forces:**
 - A great number of people seek help (want doctor's appointments)
 - Monetary funding is limited
 - There is a personnel shortage (doctors, nurses and administrators)
 - Service delivery time is always crucial
 - Doctors are not the same from one time to another
 - Patient's record must be available to all doctors
 - Some problems that patients seek help for turn out to be emergencies
 - Some patients seek help without really needing health care
- **Resulting Task patterns:**
 - Appointment Taking
 - Patient Registration
 - Patient Examination
 - Patient's Record Review
 - Patient's Record Update
 - Medication Prescription

Task Pattern

- describes the goal of the task, typical users, work context and task
- points to *structure & navigation design* patterns
- may contain sub-task patterns
Describing and Using Patterns for UI Design

Task Pattern Example

- **Name:** Patient’s Record Review
- **Context:** A doctor wants to review a patient’s record before talking with him/her in her office (she has few minutes to do this). The record will typically include time related information about illnesses, exams and medications.
- **Problem:** How can we design the interface to provide an overview and at the same time enable comparison and correlation of data, and pattern detection.
- **Example:**

 - The medical secretary locates the medical record.
 - She leaves the folder for the doctor to pick up.
 - The doctor picks up the medical record and reads it rapidly to get an overview ... she usually has less than one minute.
 - When the patient has arrived, the doctor asks what the problem is.

Task Pattern Example (cont’d)

- **Name:** Patient’s Record Review
- **Context:** A doctor wants to review a patient’s record before talking with him/her in her office (she has few minutes to do this). The record will typically include time related information about illnesses, exams and medications.
- **Problem:** How can we design the interface to provide an overview and at the same time enable comparison and correlation of data, and pattern detection.
- **Example:**

 - The medical secretary locates the medical record.
 - She leaves the folder for the doctor to pick up.
 - The doctor picks up the medical record and reads it rapidly to get an overview ... she usually has less than one minute.
 - When the patient has arrived, the doctor asks what the problem is.

© 2001 - Lafrenière & Hedenskog
Task Pattern Example (cont’d)

- **Name:** Patient’s Record Review
- **Context:** A doctor wants to review a patient’s record before talking with him/her in her office (she has few minutes to do this). The record will typically include related information about illnesses, exams and medications.
- **Problem:** How can we design the interface to provide an overview and at the same time enable comparison and correlation of data, and pattern detection.
- **Example:**

 ![Example Images]

 The medical secretary locates the medical record.

 She leaves the folder for the doctor to pick up.

 The doctor picks up the medical record and reads it rapidly to get an overview ... she usually has less than one minute.

 When the patient has arrived, the doctor asks what the problem is.

 Describing and Using Patterns for UI Design

© 2001 - Lafrenière & Hedenskog
Task Pattern Example (cont’d)

- **Forces:**
 - User
 - Medicine doctor
 - May be computer illiterate
 - Female, 30-something
 - Context
 - Doctor knows mostly all of her patients
 - Stressful environment
 - Lots of information to be analyzed in a very short time
 - Doctor may face the patient
 - May require real time interpretation of data

forces describe all the factors
(sometimes conflicting) that
influence design, directly or
indirectly

PSA uses detailed forces,
specific to the domain but
generic within it

the richness provides all the
recurring information that
would typically be gathered
during task and user analysis

Task Pattern Example (cont’d)

Task
- The medical problem has to be solved quickly
- The medical problem has to be solved correctly
 (errors could be fatal to the patient)
- There is no implicit workflow since the doctor isn’t sure of what she’s looking
 for at the beginning
- An overview is needed in order to give the complete patient medical history
- There is a need for pattern detection about illness → medication → exam
- Details needed (information drill down)

- **Interaction Design Solution:**
 - Use information visualization to represent information over time
 - Provide detail-on-demand for all relevant objects … make sure that the user
 doesn’t lose spatial context when drilling down
 - When structuring and presenting, follow the information visualization
 mantra: “Overview first, zoom and filter, then detail on demand.”
 [Shneiderman, 1996]

communicates
interaction design
considerations for
supporting the task

© 2001 - Lafrenière & Hedenskog
Task Pattern Example (cont’d)

- **Resulting Sub-task Patterns:**
 - Overview
 - Zoom
 - Filter
 - Detail-on-demand
 - Relate

- **Resulting Structure & Navigation Design Pattern:**
 - Time

- **Resulting Screen Design Patterns:**
 - Timeline
 - Summary

describe the smaller tasks that are part of the complex task described in the pattern
these are generic, making up building blocks for more complex tasks, while at the same time having their own patterns description with forces, related sub-task patterns and structure & navigation design patterns

suggests the overall way(s) to navigating (and thereby implicitly structuring) the data/functions on the level of the complex task being described in the pattern
Task Pattern Example (cont’d)

- **Resulting Sub-task Patterns:**
 - Overview
 - Zoom
 - Filter
 - Detail-on-demand
 - Relate

- **Resulting Structure & Navigation Design Pattern:**
 - Time

- **Resulting Screen Design Patterns:**
 - Timeline
 - Summary

Sub-Task Pattern Example

- **Name:** Overview
- **Examples:** Aggregated data about a population (age, education level, salary, number of children)
- **Context:** The user needs to quickly understand the essence of a data collection
- **Problem:** How do we find the essential qualities of the data, and how should it be presented?
- **Forces:**
 - There are amounts of data
 - The data possesses critical parameters
 - Humans have limitations
 - There are limitations of the graphical device
 - There are many relationships among data
 - These relationships have unequal importance (for example; all relationships are not important at the highest level)
 - Important parameters and relationships are task dependant

© 2001 - Lafrenière & Hedenskog
Sub-Task Pattern Example (cont’d)

- **Solution:**
The overview must be the basis for interaction with the data (for instance for performing zoom or drilldown actions).

Map the attributes (parameters) to graphical attributes to the following table:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Quantitative</th>
<th>Ordinal</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Size</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gray Scale</td>
<td>o</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Orientation</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Color</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Texture</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Shape</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Sub-Task Pattern Example (cont’d)

- **Related Sub-task patterns**
 - Zoom
 - Filter
 - Details-on-demand
 - Relate
 - History

- **Resulting Structure & Navigation Design Patterns**
 - Map
 - Time

- **Resulting Screen Design Patterns**
 - Summary
 - Timeline
Hands-on 2

Preparing for User & Task Analysis

45 min.

Structure & Navigation Design Pattern

- describes ways to structure information and/or functions based on navigational styles, in order to support the user’s task
- the structure and the navigation are based on the information described in the task patterns (and sub-task patterns)
Structure & Navigation Design Pattern

- so far, we have recognized seven S&N patterns based on the work of [Card & al., 1999], [Mok, 1996] and [Shedroff, 1999]:
 - time
 - map
 - step-by-step
 - matrix
 - hierarchy
 - web
 - layers

S&N Design Pattern Example 1

- **Name:** Time
- **Example:** Gantt chart, photo album
- **Context:** The focus is on time related data. We want to see the evolution of a phenomenon over time.
- **Problem:** Selecting a navigational style and designing a structure that shows the evolution of a phenomenon over time.
- **Forces:**
 - No implicit/explicit workflow
 - Time is the principal data attribute
 - Users want to perform data analysis and/or exploration
 - Detail-on-demand may be required
- **Solution:** Look for time-related attributes among data objects. Define a timeline for each object in order to present the history of events/episodes. Allow user to travel back and forth over time by navigating along the timeline.
- **Related Structure & Navigation Pattern:**
 - Matrix
- **Resulting Design Patterns:**
 - Timeline
 - Small multiples
S&N Design Pattern Example 2

- **Name**: Matrix
- **Examples**: 3-day weather forecast, medical images, sign language book
- **Context**: We want to make correlation and comparison between inter-related data using a set of common attributes.
- **Problem**: Designing a structure model that displays simultaneously the differences or similarities between sets of data.
- **Forces**:
 - Data may be time-related
 - Inter-related data (at least on a set of shared attributes)
 - The user wants to analyze, compare and differentiate in order to make a decision
 - The user wants to analyze objects with different qualities
 - Detail-on-demand may be required
- **Solution**: Look for common attributes. Define a frame to display the attributes and repeat this frame for each of the data to be analyzed. Put the emphasis on the attributes, not on the container.
- **Related Structure & Navigation Design Pattern**:
 - Time
- **Resulting Design Pattern**:
 - Small multiples

Screen Design Pattern

- describes screen UI design solutions
- based on the work of [Tidwell, 1999]
Screen Design Pattern Example

- **Name:** Timeline
- **Examples:** Calendar, *curriculum vitae*, agenda, Gantt chart
- **Context:** There is a need to convey a lot of time-related composite information that may be interrelated.
- **Problem:** How should the information be displayed to the user?
- **Forces:**
 - Data analysis
 - No implicit workflow
 - Overview needed
 - Need for pattern detection
 - Need to correlate data
 - Need to compare data
 - Details needed (information drill down)
 - Information has to be easily interpreted with accuracy
- **Solution:**
 Implement timeline into which you group related data vertically, enabling comparison between groups of data, supplying detail on demand, displaying events and episodes on the horizontal axis. Offer zooming, filtering, emphasizing and searching capabilities.

Screen Design Pattern Example (cont’d)

- **Example:**

![Timeline Example Image]
Part 4
Capturing Patterns

Capturing Patterns

• patterns are not invented: they are discovered
• we still have to formally document ...
• ... and this is not an easy thing!
What Makes a Good Pattern?

- it solves a problem!
- it is valid
- non-obvious solution
- it describes relationship
- it adds to human happiness :-)
- it is fit for use

Approach

- we don’t think this can be automated!
- we’re providing a starting point by pointing out core characteristica that we can make predictions for regarding design implications (structure and UI)
Task Pattern Forces

- things to look for while defining the forces of a task pattern

User Forces

- age
- gender
- education
- familiarity with technology
- familiarity with task
- culture
- language
- literacy
- physical impairments
- personal values
Context Forces

- indoors/outdoors, office/home
- fatigue, stress
- interruptions
- time to complete
- error impact
- interactions with others
- security issues
- workspace: private/shared, mobile/stationary, closed (office)/open (cubicule), facing someone

Task Forces

- goal
- trigger (time, visit, phone call, etc.)
- purpose (give info., entertain, educate, guide, sell, analyze)
- complexity
- duration
- frequency
- artifacts used (forms, notes, calendar, etc.)
- workflow
- formal/informal aids (dictionary, procedure manual, colleague)
Hands-on 3

Describing a Task Pattern

90 min.

Part 5

Discussion & Conclusion
Conclusion

- our work on HCI is just beginning ...
- please share with us your experiences using patterns and PSA

References

- Borchers, I. *Designing Interactive Music Systems: A Pattern Approach*.
- Cooper, A. (1999). *The Inmates are Running the Asylum*. SAMS.
- Erickson, T. *The Interaction Design Patterns Page*. http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html

© 2001 - Lafrenière & Hedenskog
References (cont’d)

- Lea, D. *Patterns-Discussion FAQ*. http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

References (cont’d)

- Robertson, S. *Requirements Patterns via Events/Use Cases*. http://www.atlisysguild.com/GuildSite/SQR/Requirements_Patterns.html
- Robertson, S. *Reusing the Products of Analysis*. http://www.atlisysguild.com/GuildSite/SQR/reusingAnalysis.html